Graphene nanoelectromechanical systems as stochastic-frequency oscillators.

نویسندگان

  • Tengfei Miao
  • Sinchul Yeom
  • Peng Wang
  • Brian Standley
  • Marc Bockrath
چکیده

We measure the quality factor Q of electrically driven few-layer graphene drumhead resonators, providing an experimental demonstration that Q ∼ 1/T, where T is the temperature. We develop a model that includes intermodal coupling and tensioned graphene resonators. Because the resonators are atomically thin, out-of-plane fluctuations are large. As a result, Q is mainly determined by stochastic frequency broadening rather than frictional damping, in analogy to nuclear magnetic resonance. This model is in good agreement with experiment. Additionally, at larger drives the resonance line width is enhanced by nonlinear damping, in qualitative agreement with recent theory of damping by radiation of in-plane phonons. Parametric amplification produced by periodic thermal expansion from the ac drive voltage yields an anomalously large line width at the largest drives. Our results contribute toward a general framework for understanding the mechanisms of dissipation and spectral line broadening in atomically thin membrane resonators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphene as a Massless Electrode for Ultrahigh-Frequency Piezoelectric Nanoelectromechanical Systems.

Designing "ideal electrodes" that simultaneously guarantee low mechanical damping and electrical loss as well as high electromechanical coupling in ultralow-volume piezoelectric nanomechanical structures can be considered to be a key challenge in the NEMS field. We show that mechanically transferred graphene, floating at van der Waals proximity, closely mimics "ideal electrodes" for ultrahigh f...

متن کامل

A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator.

Sensors based on nanoelectromechanical systems vibrating at high and ultrahigh frequencies are capable of levels of performance that surpass those of larger sensors. Nanoelectromechanical devices have achieved unprecedented sensitivity in the detection of displacement, mass, force and charge. To date, these milestones have been achieved with passive devices that require external periodic or imp...

متن کامل

Electron pumping in graphene mechanical resonators.

The combination of high-frequency vibrations and metallic transport in graphene makes it a unique material for nanoelectromechanical devices. In this Letter, we show that graphene-based nanoelectromechanical devices are extremely well suited for charge pumping due to the sensitivity of its transport coefficients to perturbations in electrostatic potential and mechanical deformations, with the p...

متن کامل

Electromechanical oscillations in bilayer graphene

Nanoelectromechanical systems constitute a class of devices lying at the interface between fundamental research and technological applications. Realizing nanoelectromechanical devices based on novel materials such as graphene allows studying their mechanical and electromechanical characteristics at the nanoscale and addressing fundamental questions such as electron-phonon interaction and bandga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 14 6  شماره 

صفحات  -

تاریخ انتشار 2014